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SUMMARY

A summary is given of the background and present status of the pure-
planing theory for rectangular flat plates and V-bottom surfaces. The
equations reviewed are compared with experiment. In order to extend the
range of available planing data, the principal planing characteristics for
models heving sharp chines have been obtained for a rectangular flat and
two V-bottom surfaces having constant angles of dead rise of 20° and 400,
Planing data were also obtained for flat-plate surfaces with very slightly
rounded chines for which decreased lift and drag coefficients are obtained.

A revision of the theory presented in NACA Technical Note 3233 is
presented for the rectangular flat plate. The revised theory bases the
aerodynamic suction effects on the total 1ift rather than solely on the
linear component. Also a crossflow drag coefficient which is dependent
on the shape of the chines was found from experiment to be constant for
2 given irmmersed cross section; however, for surfaces, such as those
having horizontal chine flare or vertical chine strips, the crossflow
drag coefficient is constant only for the chine-immersed condition. The
theory is extended to include triangular flat plates planing with base
forward and V-shaped prismatic surfaces having a constant angle of dead
rise, horizontal chine flare, or vertical chine strips. A method is also
presented for estimating the center of pressure for surfaces having either
rectangular or triangular plan form. The results calculated by the pro-
posed theory have been correlated only with the data considered to be pure
rlaning; however, for conditions not considered pure planing, a method is
given for estimating the effects of buoyancy. The agreement between the
results calculated by the proposed theory and the experimental data is,
in general, good for calculations of pure-planing 1ift and center-of-
pressure location for flat plate, V-bottom, and related planing surfaces.

INTRODUCTION

Recent developments in water-based aircraft have resulted in config-
urations utilizing planing surfaces operating at angles of trim, length-
beam ratio, and Froude number beyond those for which most of the available
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planing theories were correlated with experimental data. In reference 1
a preliminary review of these theories for a pure-planing rectangular
flat plate was made to determine whether available planing theories were
adequate in estimating the planing 1ift in these extended ranges. In
addition to this review, a modification and addition to existing theory
which is useful in predicting the 1ift and center of pressure for pure-
planing rectangular flat plates was presented.

The review in reference 1 indicated there were no data available in
the extended ranges of combined high trim and high length-beam ratios;
consequently, the pricipal planing characteristics for models having
~sharp chines have been obtained in these extended ranges for a rectangu-
lar flat and two V-bottom surfaces. It was also noted in reference 1
that there was a difference in the 1ift coefficients obtained from various
experimental investigations; therefore, data have been obtained for rec-
tangular flat-plate surfaces having very slightly rounded chines to deter-
mine the influence of slight differences in construction at the point of
flow separation on the 1ift coefficient.

The review of existing theories and data has been extended to include
those applicable to V-bottom surfaces. The theory presented in refer-
ence 1 for estimating the 1lift and center-of-pressure location of a pure-
planing rectangular flat plate has been revised and extended to include
triangular flat plates planing with base forward and V-shaped prismatic
surfaces having a constant angle of dead rise, horizontal chine flare, or
vertical chine strips. Since water-based aircraft operate at low Froude
numbers as well as high Froude numbers, an approximate method has also
been presented for estimating the effect of buoyancy on 1ift coefficient.

SYMBOLS
A aspect ratio, %L
m

Ay ratio of maximum beam to overall length (see fig. 40)
b beam of planing surface, ft

c drag coefficient based on square of beam, ——%

D,b qbg

Cp,c crossflow drag coefficient

(CD,C)B=O crossflow drag coefficient for a cross section having an
effective angle of dead rise of O
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Cp,s

Cp,i

drag coefficient based on principal wetted area, ag

induced drag coefficient, CL,S tan T
skin-friction coefficient, CD,S - CL,S tan T
1ift coefficient

L
1ift coefficient due to buoyancy, ag (ee eq. (31))
1ift coefficient based on square of beam, —L§
gb
1ift coefficient based on principal wetted area, ég
1ift coefficient due to buoyancy based on total wedge-shaped

volumetric displacement of the planing surface, E%%l (see
egs. (28) to (30))

speed coefficient or Froude number, Q%%;

drag of planing surface, 1b

dead-rise function (applied only to crossflow term, see fig. 2)
acceleration due to gravity, 32.2 ft/sec2

dead-rise function (applied only to linear term, see fig. 1)

1ift of planing surface, 1b

1ift due to buoyancy, 1b

1ift due to buoyancy based on total wedge-shaped volumetric
displacement of the planing surface, 1b

length of planing surface, ft
chine wetted length, ft

keel wetted length, ft
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In mean wetted length (distance from aft end of planing surface
to the mean of the heavy spray line), ft

Zcp center-of-pressure location (measured forward of trailing
edge), ft

7'Cp . . .

T;— nondimensional center-of-pressure location

N normal force, 1b

q free-stream dynamic pressure, %pve, lb/sq £t

Vig

R Reynolds number, -——==

S principal wetted area (bounded by trailing edge, chines, and
heavy spray line), sq ft

v horizontal velocity, ft/sec

B angle of dead rise, radians unless otherwise stated

Be effective angle of dead rise (angle between a straight line
drawn from keel to the chines and the horizontal), radians
unless otherwise stated

Bbasic basic angle of dead rise (angle between V-shaped portion of
model and a horizontal line perpendicular to keel), radians
unless otherwise stated

p mass density of water, slugs/cu ft

T trim (angle between planing bottom and horizontal), radians
unless otherwise stated.

v kinematic viscosity, sq ft/sec

Subscript:

1,2,3,. . . 9 used to indicate various terms in equations for 1lift

coefficient
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REVIEW OF EXISTING PLANING-LIFT THEORY

In reference 1 the pure-planing 1ift equations for rectangular flat
plates presented in references 2 to 11 were reviewed and compared with
experiment. In addition to 1ift theories for rectangular flat plates,
the present review considers V-shaped surfaces having a constant angle
of dead rise and V-shaped surfaces having horizontal chine flare.

Since publication of reference 1, Farshing (ref. 12) presented a
cubic equation for the 1ift on rectangular flat plates derived from a

consideration of deflected mass and based on an effective angle of attack.
The equation has the form

or? + [(2.292 - 1.5728)7 - 2.379 - A]CLE +

(28 + 4 + (6.283A - k.584)7]cy, - 6.28387 = 0 (1)

However, the 1lift coefficient obtained from equation (l) was multiplied

by an empirical factor to get better agreement with experimental data;
thus,

CL,s = Cik (2)
where
= o 1+ A < '
£ = 1.359 - tanh(7§?—> (20 <7 S 180) (3)
1+ A T - 180> 1 {200 < 210
= - T =2 ltanh=— 18° € 1 £ 30 (&)
E = 1.359 tanh( N ) + ( 055 ) g ( )

and T 1s measured in degrees.

P. R. Crewe of Sanders-Roe Ltd. (British) in correspondence with
the Iangley Laboratory proposed an equation for rectangular flat plates
and a V-shaped surface having a basic angle of dead rise of 20° and
horizontal chine flare that had a linear term with a form analogous to
airfoil lifting-surface theory. This equation, based on the data of
Kapryan and Weinstein (ref. 13), is
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Cp,g = sin T cos T 8 — \/i - 2_-6_- E99515> +2sinT - B sin%i (5)
&)

where
B = 2.67 (A < 2.0)
B = 3.0 (A > 2.0)

and Bbasic is the basic angle of dead rise in radians for a model having

horizontal chine flare.

In reference 14, Korvin-Kroukovsky, Savitsky, and Lehman proposed.
an equation for rectangular flat plates and V-shaped surfaces having a
constant angle of dead rise that was derived primarily on the basis of
the data of Sottorf (ref. 15) and Sambraus (ref. 16). This formula can
be written as

0.6
1.1
1.1 0. 0.012(57.37
CL,s = 0.012(57.31) A 2 _ 0.0065(57.38)A i2753 ) } (6)

Locke (ref. 17) proposed that the 1ift characteristics of rectangular
flat plates and V~shaped surfaces having a constant angle of dead rise can
be presented by a power function of the form

- 2B g
Cr,s = 0.5(1 - -;(—)KT (1)

where K and 1 depend only on aspect ratio and are obtained from curves
given in reference 17. ’

Schnitzer (ref. 18) presented an equation for rectangular flat plates
and V-shaped surfaces which was derived from a consideration of two-
dimensional deflected mass and was modified for three-dimensional flow by
Pabst's empirical aspect-ratio correction factor (ref. 19) and Bobyleff's
flow coefficients presented in reference 20. The equation can be written
in the form:

1
CL;S = A¢ COSET sin T {ﬁ'[(élé‘ - l)'tan E]e + B(-_—bg tan T - ta121 B> (8)
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The term ¢ , which is dependent on aspect ratio, and the term B, which
is dependent on angle of dead rise, are given in references 19 and 20,
respectively. For the case of a flat-plate planing surface, equation (8)
reduces to

Cr,s = ¢(1]I_—56—& sin T cos®r + 0.88 sinT cos T) (9)

In reference 21, Brown presented empirical equations based on
deflected-mass considerations for rectangular flat plates and V-shaped
surfaces having a constant angle of dead rise. The equations for a flat
plate can be written in the form: '

Cr,s = o (tn < b) (10)

T T .I’m
cot—2-+1t+ (2cot-2——ﬂ>7b—

and

im T

CL,s = (1.67 sin T + 0.09)sin T cos 'r(l - —t—)—> PO S %-)- (Zm 2 b) (11)
3 cot 5 n

For a surface having a constant angle of dead rise,

1 . .
CrL,s = 3.6 —,éﬁ cot®p sindT(1 - sin T)cos T (7'1{ S lk,cr) (12)

and
C l 6 2B . O O . Zk’cr
L,s ~ 0T --I-{-—51n1'+.9s1n'rcos"rl- T +
b . .
0.9 1 sin T(1 - sin T)cosdT (Zk Z Zk,cr) (13)
where
1 =2 ot Tt (1k
k,cr =% COt T ten P 14)
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which is defined as the critical keel wetted length. For surfaces having
a constant angle of dead rise and a transverse step, the critical keel
wetted length is defined as the keel wetted length at which the still-
water line passes through the rearmost point of the chine. For the flat
plate the value of the critical keel wetted length was assumed, after
analysis of experimental data, to be equal to the beam.

PROPOSED THEORY

Lift

In reference 1 an equation for the 1ift on a rectangular flat plate
was developed from a consideration of linear and nonlinear components of
1ift (an approach generally used in low-aspect-ratio and slender-body
airfoil theory). In the present report this equation is revised and
extended to include V-bottom surfaces. The equation is divided into
three parts: (1) a reasonably accurate approximation to the linear com-
ponents of 1lift is made; (2) a method for calculating the crossflow
effects is presented; and (3) an estimation of the aerodynamic leading-
edge suction is made.

Linear term.- The linear term is determined in reference 1 from a
consideration of the 1lifting-line theory and is given by

(15)

This relation gives the linear component of 1ift on a pure~planing flat
plate.

In references 3 and 18, a dead-rise function was determined from a
consideration of an iterative solution made by Wagner (ref. 2) for the
impact force on a V-bottom surface immersing with a constant vertical
velocity. The dead-rise function can be written

_ _ 2B 2<%an é)e

This dead-rise function (developed for application to equations derived
from virtual mass concepts) does not correlate well with experiment when
applied to equation (15) for angles of dead rise above approximately 25°.
Therefore, another dead-rise function 1 - sin Be vwhich correlates well
with experiment up to angles of dead rise of 50° is used; thus,
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Cr,2 = ——i'iﬂf(l - sin Be) (16)

This expression is for the linear component of 1ift on rectangular flat
and V-bottom planing surfaces. A comparison of the dead-rise function
1 - sin Be with the dead-rise function based on Wagner's solution is
given in figure 1.

Crossflow effects.- For a simple theoretical consideration of the
crossflow effects, the velocity component perpendicular to the surface
of a flat plate is assumed to be of the magnitude V sin 7. The flow
is projected into components perpendicular to and parallel to the planing
surface, and the drag force associated with the flow perpendicular to the
planing-surface is calculated. The normal force on a flat plate, there-
fore, is

N = Cp o § S(V sin )2

Then

Cr,,3 = Cp,ec sin®rt cos T (a7)

is a 1ift coefficient due to crossflow effects, and is proportional to

sinr. This relation is the concept presented for airfoils by Betz in
reference 22, The crossflow drag coefficient CD,c used in this ele-

mentary derivation of the crossflow term was assumed in reference 1 to
be one-half the value CD,c = 2 generally used for aerodynamic surfaces,

The value of Cp,c is known to vary with the shape of the cross section
and to be sensitive to local shape at the edges. Since the theoretical
determination of these effects is very difficult and the simple cases
which have been solved have not correilated with experiment, the analysis
of suitable experiments will generally provide the easiest and most
accurate method of determining Cp,c.

For the case of the V-bottom the theoretical effect of dead rise
is given by Bobyleff in reference 20 for a bent lamina, the section of
which consists of two equal straight lines forming an angle. Bobyleff's
flow coefficient, which can be approximated by cos B, (see fig. 2),
represents the ratio of the resultant pressure on a V-bottom to that
experienced by a flat plate of the same beam in normal flow; thus,

CL,h = G&Lc)ﬁezo sin27 cos T cos Be (18)

which is the crossflow component of 1lift.
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Suction component of lift.- An airfoil has a suction component of
1ift due to the large negative pressures produced by the flow around the
leading edge of the airfoil; however, for a planing surface where there
is no flow around the leading edge, this suction does not appear. In
the strictest sense the suction component of 1lift should be based only
on the linear term (see ref. 1); however, comparison of experiment with
theory indicate that better agreement is obtained if the suction component
of 1ift is based on CL’g + Cp,4. Therefore, the 1ift is less than that

predicted by equations (16) and (18) by an amount

CL,5 = (CL,2 + CL,M—) Sin2T (19)

Total 1ift.- The total 1ift on pure-planing surfaces can be obtained
from the sum of the linear component of 1lift (eq. (16)) and the crossflow
effects (eq. (18)) minus the suction component of 1ift (eq. (19)); thus,
by combining terms

_ | O.5xAT 2 . 3 .2
CL,S = [—i—:fz cos“t(1 - sin Beﬂ + [KQD:C>Be=O cos”T 8in T cos Bé]
(20)
CL,S = CL,6 + CL,7
where
_ O.OmAT o2 ,
C1,,6 = S oS T(1 - sin Be) (21)
and
c = cosPT sin°T cos B (22)
1,7 = (°0,c) pe=0 e

For equation (20) to predict adequately‘the 1lift on triangular sur-
faces planing with base forward, it has been necessary to define the aspect
ratio as the ratio of maximum beam to overall length; that is, A = b/1.

Application of Lift Theory

In order to use equation (20) to predict the 1ift of planing surfaces,
only the determination of the proper value of CD,c is required. Values



NACA TN 3939 11

of CD,c fbr various chine configurations for which experimental data
are available are presented in figure 3. For a given model Cp,c did not

vary with trim or length-beam ratio. Also it can be ‘seen that, as long
as the angle of dead rise was constant for the entire beam, CD,c did

not vary with the angle of dead rise.

Rectangular flat and V-bottom surfaces having a constant angle of
dead rise.- The crossflow drag coefficient for the sharp-chine models
was determined from tests (from ref. 23 and data presented in the present
report) to be 4/5. This value is two-thirds the value given for a two-
dimensional flat-plate airfoil; thus, from equation (20)

Cy,g = g4§£%: cos®t(1 - sin Be) + % 5in®T cosdT cos Pe (23)

The relative magnitudes of the total 1ift (eq. (23)), the total
1ift before removal of 1lift due to leading-edge suction (eq. (16) plus

eq. (18) with CD,c = %), and the crossflow term (gq.‘(22) with CD,c = %)

is shown in figure 4 for surfaces having angles of dead rise of 0°, 200,
and 40°.

Horizontal chine flare.- The total 1ift on a pure-planing V-shaped
prismatic surface with horizontal chine flare similar to the models shown
in figure 5 can be determined from equation (20). The crossflow drag
coefficients CD,c determined from data presented in references 13, 2L,

and 25 are given in figure 3.

Vertical chine strips.- The total 1ift on a pure-planing V-shaped
prismatic surface with vertical chine strips similar to the models shown
in figure 6 can be determined from equation (20). The crossflow drag
coefficients determined from the data presented in references 25 and 26
are given in figure 3.

Triangular flat plate.- The total 1lift on a pure-planing triangular
flat plate planing with base forward can be estimated from equation (23)
if the aspect ratio is defined as the ratio of the maximum beam to the
overall length or At = b/l; thus,

0-5J(At'r
Sl T~ 4 3¢ sin®
CL,s = T3 E Cos°T + 3 cos’T sin®r (2k4)
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Center of Pressure

The center of pressure on a planing surface may be determined from
the 1lift coefficients given by equations (21) and (22) and by estimating
the location of the center of pressure of these two components of the
total 1ift coefficient for a given planing-surface plan form.

Rectangular plan form.~ The center of pressure of the component of
1ift given by equation (21) is-assumed to be located at seven-eights of
the mean wetted length from the trailing edge of the planing surface.
This location is between the three-quarter-chord position generally
assumed in lifting-line theory and the position obtained from the pre-
diction of no 1ift behind the section maximum width for low-aspect-
ratio airfoils (ref. 27).

The center of pressure for the 1ift due to crossflow effects is
generally assumed to be located at the center of the area in airfoil
theory. Therefore, the center of pressure for the component of 1ift
given by equation (22) is assumed to be located at the center of the
mean wetted length; thus,

1 1
C@> 8,61 5 %7
cale

CL,s

(25)

Im

where CL,6 is given by equation (21), CL,7 is given by equation (22),
and Cp, g is given by equation (20).

Triangular plan form.- The center of pressure of the component of
1ift given by the first term on the right-hand side of equation (24) is
assumed to be located at the mean of the heavy spray line which is approx-
imately the section of maximum wetted width.

The center of pressure for the component of 1ift given by the second
term on the right-hand side of equation (24) (that is, the crossflow term)
is assumed to be at approximately the center of the wetted area; thus,

2
CEQ e (26)
Ity Jeale CL,S

and is the center-of-pressure location for triangular flat plates planing
with base forward. The value of CL,S is determined from equation (2&)
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where CL,B and CL,9 are given by the first and second terms on the
right-hand side of equation (24), respectively.

Comparison of Proposed and Previous Planing Formulas

A comparison of the values of 1ift coefficient (plotted against
trim for constant length-beam ratio) calculated from the proposed theory
(eq. (20)) and from previous summarized planing formulas is given in fig-
ures 7 to 10 and an index to the comparison is given in the following
table:

BEquation (20)* compared with planing
. formulas presented in - Lift coefficient values
Configuration presented in figure -
Reference Equation
L"; 5’ 6) and Tf-==--mmmmm e e e 7(3)
Rl [y prerareryl IR
Rectangular flat plate | ~~ =~~~ =====--= 7)y (9), (10), and (11 T(e)
gal R B (2), (5), end (6) 7(a)
R 7(e)
5 F U "%
V-shaped surface having | —--mremm=ma-e- (6) and (7) 8(a)
a constant angle Of [ —-=—seeeeaonn (8), (12), and (13) 8(b)
dead rise of 20°
V-shaped surface having | ~=-=—===——mmemm (6) and (7) 9(a)
a constant angle of | —=memmscmcmeon (8), (12), and (13) 9(b)
dead rise of Lo°
V-shaped surface having | ~----=m—mcenmm (5 )**x 10
an angle of dead rise
of 20° and horizontal
chine flare (e = 16°)

*Value of Cp,c of % (see eq. (23)) used unless otherwise noted.

*¥1ift coefficients were not plotted since the results depended on the airfoil
data used.

**¥Value of Cp,c ©of 1.59 used in equation (20).

In figure 11 the values of 1lift coefficient (plotted against mean-
wetted-length—beam ratio for constant trim) calculated from the proposed
theory (eq. (23)) and planing formulas as presented in references 1L, 17,
18, and 21 are compared with the data of the present report (see
tables I(a), IT, and III) and references 235 and 28 for models having
angles of dead rise of 0° (fig. 11(a)), 20° (fig. 11(b)), and 4OO
(fig. 11(c)). Only the theories that apply to both flat-plate and
V-shaped surfaces have been compared in figure 11.
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It can be seen from figures 11(a) to 11(c) that none of the planing
formulas presented in references 14, 17, 18, and 21 are adequate for
estimating the 1ift coefficients for either flat-plate or V-bottom planing
surfaces, whereas the 1ift coefficients calculated from the equation pro-
posed in the present report (eq. (23)) agree very well with experiment.
The equation presented in reference 12 (eq. (2)), however, gives a good
approximation of the 1ift coefficient for a flat plate. (See fig. 7(d).)

EXPERIMENTAYL INVESTIGATION

Description of Models

The models used for this investigation had a beam of 4 inches and
a length of 36 inches. The models shown in figure 12 for a flat plate
and surfaces having angles of dead rise of 20° and 40O° were constructed
of brass and are the same models investigated in references 23 and 28,
Additional flat-plate models that had sharp chines, l/6h—inch-radius
chines, and 1/16-inch-radius chines were constructed of plastic. (See
fig. 13.) The model with the 1/64-inch-radius chines was made by rounding
the chines on the sharp-chine model after the tests with the sharp-chine
model had been completed. The plastic models were backed with a l/2-inch
reinforcing steel plate.

Apparatus and Procedures

The experimental investigation was made with the main towing carriage
in lLangley tank no. 2 and existing strain-gage balances which independently
measured the 1ift, drag, and moment. The 1ift and drag were measured with
the balances capable of measuring: (1) 600 pounds of 1lift and 250 pounds
of drag, and (2) 1,000 pounds of 1ift and 600 pounds of drag. The moment
was measured about an arbitrary point above the model. The tests were
made with the wind and spray shield installed, as shown in figure 1k,
unless otherwise indicated.

The wetted areas were determined from underwater photographs made

with a TO0-millimeter camera mounted in a waterproof box located at the
bottom of the tank. The camera and high-speed flash lamps were set off
by the action of the carriage interrupting a photoelectric beam. The
wetted length was obtained from markings on the bottom of the models.
In order to assure a very smooth bottom, the markings on the brass models
were erased except in the region of the heavy spray line, (See fig. 15.)
The plastic models had markings each 1/2 inch for the full length of the-
models.
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The force measurements were made at constant speeds for fixed angles
of trim. The change in trim due to structural deflection caused by the
1ift and drag forces on the model was obtained during the calibration of
the balances and the trim of the model was adjusted accordingly before
each run. Slight adjustments to 1lift and resistance to correct the data
to the desired trim were made after completion of tests for the cases
where the forces or center-of-pressure location were different from the
values uged to estimate the trim due to structural deflection. The change
in trim due to structural deflection did not exceed 0.2° for most condi-
tions although in a few cases changes up to 0.6° cccurred.

The aerodynamic forces on the model and towing gear were found to be
negligible when the wind screen was used. The aerodynamic tares were
subtracted from the data when the wind screen was not used.

The accuracy of the quantitlies measured are believed to be within
the following limits:

P T s O I c .
Resistance, 1b . ¢ o & o & ¢ ¢ & o o ¢ o o « ¢« o o o s o« 3 ¢ o ¢ =
Trimming moment, ft-1b .+ o 4 + o ¢ o o o « o o« « o« s o s s s« o & *3.0
Wetted length, £ o o o o o o o o o o o o s o o o. 6 ¢« s o o » & o ¥0.0L
Trim, G€E « 4 o o = 5 « o o o =« o s s 8 2 s s o o o s » o & o o s ¥0.15
Speed, FH/SEC v o o ¢ o o o o 8 o o o o s s 8 s s e o o o e s e . 20,20

The forces were converted to coefficient form by using a measured
value of density of‘l.942 slugs/cu ft. The kinematic viscosity measured

during the tests varied from 1.55 X 1072 sq ft/sec to 1.80 X 1072 sq ft/sec.
RESULTS AND DISCUSSION

General

The 1ift coefficient, resistance coefficient, ratio of wetted length
to beam, ratio of center-of-pressure location to mean wetted length, speed
coefficient, and kinematic viscosity are presented at given trims in
tables I to IIT for all models. The 1ift and drag coefficients are
expressed both in terms of the square of the beam and in terms of prin-
cipal wetted area.

Sharp chines.~- The 1ift coefficients and center-of-pressure location
for the sharp-chine models are considered in the section "Comparison of
Theory and Experiment for Lift."

The resistance data for the sharp-chine brass models having constant
angles of dead rise of 0°, 20°, and 40° are presented in figure 16 as
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plots of the variation of drag coefficient CD S and induced drag coef-
J

ficient Cp,j (which is equal to Cr,s tan T) with mean-wetted~length—
beam ratios for given trims. The difference between the solid and dashed
lines represents the friction drag. (Since the data were obtained for
speeds above the critical speed of wave propogation for the 6-foot-deep
tank, there is no wave drag due to transverse waves included; however,
there may be some drag due to spray or other causes included in this
difference.) At high trims and low length-beam ratios the induced drag
exceeds the total drag and indicates an apparent negative friction force.
(This result was previously reported in ref. 23.) The volume of forward
spray is large at high trims and appears to have a high forward velocity
with respect to the model. The relative velocity of the model in the
region of forward spray therefore is effectively reversed (see fig. 17)
so that the friction drag due to this spray acts in a direction opposite
to that of the drag in the principal wetted area and thereby reduces the
total drag. Therefore, at low length-beam ratios where the friction drag
is small, this negative friction drag due to forward spray may cause a
negative friction force at high trims.

i - 1o
b
chines and constant angles of dead rise of 0°, 200, and L40° is given in

The variation of with trim for the models having sharp

figure 18. At a trim of 129, the value of lhfé_lg is approximately

constant for all length-beam ratios for the models having constant angles
of dead rise of 0°, 20°, or 40°., At high trims, however, the values of
lx - 1o
b
ratio, are approximately constant for a given trim for a model having a
constant angle of dead rise of 200, and decrease with an increase in
length-beam ratio for a model having a constant angle of dead rise of

40°, The value of <K ='C for the flat-plate model decreases with

for the flat-plate model increase with increase in length-beam

b
increase in trim at low length-beam ratios and increases with increase
lk - 1l¢

in trim at high length-beam ratios; however, the value of 5

decreases with increase in trim for all length-beam ratios for the models
having constant angles of dead rise of 20° 'and 40°,

Wind screen and spray shield.- The 1ift coefficient for the flat-
plate model with wind screen and spray shield removed (aerodynamic tares
subtracted) was approximately the same as the 1ift coefficient obtained
when the wind screen and spray shield were used. (See fig. 19.) At a
trim of 12° the drag coefficient for the flat-plate model with the wind
screen removed was approximately the same as the drag coefficient obtained
with the wind screen installed (see fig. 20); however, for a trim of 18°
the drag coefficient of the flat plate with the wind screen removed was
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less than that obtained when the wind screen was used even before the
aerodynamic tares were subtracted. The value of the difference is in
the wrong direction to be explained by the aerodynamic tares. (The
aerodynamic tares subtracted were less than the difference in fig. 20.)
The variation of the center-of-pressure location with mean length-beam
ratio on the flat-plate model was approximately the same for data taken
with and without the wind screen and spray shield installed. (See

fig. 21.)

Speed.- The effect of speed at high trims (24°) is shown in fig-
ures 22 to 24, The variation of 1lift coefficient, drag coefficient, and -
center-of -pressure location is approximately the same for speeds of 30
and 60 feet per second for 4-inch-beam prismatic models having constant
angles of dead rise of OO, 209, and MOO; therefore, there was apparently
no speed effect for this range of speeds.

Rounded chines.- The effect of 1/6l-inch-radius and 1/16-inch-radius
chines on the 1lift coefficient, drag coefficient, center-of-pressure loca-
tion, skin-friction coefficient, and lift-drag ratio of a W-inch-beam
rectangular flat plate is shown in figures 25 to 29. Rounding the sharp
chines of the flat-plate model to radii of 1/64 inch and 1/16 inch resulted
in a decrease in 1ift and drag coefficients; however, the center-of-
pressure location, skin-friction coefficients, and lift-drag ratios
remained approximately the same. A decrease in 1ift of approximately
5 and 9 percent resulted from rounding the sharp chines to a radii of
1/64 inch and 1/16 inch, respectively. (See fig. 25.) A decrease in lift
for a small rounding of the chines was also observed by Perry (ref. 29).

The variation of skin-friction coefficient with Reynolds number for
a trim of 8° is presented in figure 28 for a flat-plate model having sharp
chines and 1/16-inch-radius chines. The agreement between the data and
the Schoenherr turbulent-flow line indicates that, at low trims and high
Reynolds numbers, the drag can be calculated with reasonable accuracy from

CD,S = Cf + CL,S 'tan T (27)

where Cg 1is determined from the Schoenherr turbulent flow line. (See

ref. 30.) The lift-drag ratios at high trims are influenced little by
the chine condition; however, at low trims (80) the lift-drag ratios for
the sharp-chine models are slightly higher than those for models having
rounded chines. (See fig. 29.)

Pure planing.- The experimental data were considered as pure planing
if the 1ift coefficient due to buoyancy based on the total wedge-shaped
volumetric displacement of the planing surface Cy, Vol did not exceed

’ .
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a given value. The 1ift coefficient due to buoyancy was calculated from
the wedge-shaped volumetric displacement of the planing surface below
the level water surface given by

Im 1 .
CL,VOl =5 2CV2 sin 27 (28)

for rectangular flat plates and

2
1 ‘
CL,vol = 1 l>° sin 27 + -]-‘-<27,c + lk)tan é] (29)

(1 + 10 cy2L P 5

for rectangular surfaces having dead rise and

C sin 2T (30)

_1
L,Vol ~ b 302

for triangular flat plates with straight leading edge and pointed trailing
edge.

The allowable 1lift coefficient due to buoyancy CL,Vol’ as determined

from equations (28) to (30), was arbitrarily selected as 0.0l at a trim
of 16°. The maximum allowable lift coefficient due to buoyancy CL,VOl

for other trims was determined by drawing a straight line from zero trim
(and zero 1ift coefficient due to buoyancy CL,Vbl) through the value 0.01

at a trim of 16° on a curve of the variation of 1ift coefficient with trim.
For the flat-plate data the maximum allowable 1ift coefficient due to
buoyancy Ci, vol selected by this method at a trim of 20 varied from

16 percent of the predicted 1lift coefficient at a length-beam ratio of

8 to 3.3 percent of predicted 1lift coefficient (eq. (23)) at a length-
beam ratio of 1/2. These values decreased with increasing trim so that
at 30° they would vary from 6.6 percent at a length-beam ratio of 8 to
3.0 percent at a length-beam ratio of 1/2. The permissible 1ift coef-
ficient for surfaces having dead rise is, in general, a slightly greater
percentage of the predicted 1ift coefficient than the values given for
the rectangular flat plate.

Buoyancy.- The experimental 1ift coefficients given in reference 31
less the 1ift coefficients calculated from equation (20) with CD,c = 1.15

plotted against the 1ift coefficient due to buoyancy Cy, yo1 calculated

from equation (28) are plotted in figure 30. Since equation (20) with
CD,c = 1.15 1is approximately the pure-planing 1ift for the model inves-
tigated in reference 31 (see fig. 32(c)), the subtraction of this value
from the experimental 1ift coefficients should indicate the amount of
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1ift due to buoyancy present in the data. Only values of the difference
between the experimental 1ift coefficient and the calculated 1ift coef-
ficient greater than 0.0l are considered since, for small differences
between experimental and calculated values, this method is not consid-
ered to be sufficiently accurate to determine the 1ift coefficient due

to buoyancy present in the experimental data; however, this method should
give reasonably accurate indications of the 1ift coefficient due to
buoyancy present in the experimental data for the cases where the 1ift
ceefficient due to buoyancy is large. Figure 50 shows that the magni-
tude of the 1lift coefficient due to buoyancy for different speeds is
approximately one-half the 1ift due to buoyancy based on the total wedge-
shaped volumetric displacement computed by equation (28); therefore, a
rough empirical approximation of the increase in 1lift coefficient due to
buoyancy can be calculated with reasonable accuracy from

s~k Cyn (285 cpz3) G

where Cp yoy is given in equations (28) to (30). For low trims (4°) a

1ift coefficient due to buoyancy greater than that given by equation (31)
is required to account for the additional 1ift coefficient due to buoyancy
as indicated by the flagged symbols in figure 30.

Comparison of Theory and Experiment

Lift.- Only the experimental data indicated as pure planing by the
method discussed in the preceding section are considered for the com-
parison with theory. Also, the data considered are only for the chine-
imersed condition. The theory is applicable to the non-chine-immersed
condition; however, for surfaces having other than a constant angle of
dead rise such as those having horizontal chine flare or vertical chine
strips, the shape of the cross section varies, and, therefore, the cross-
flow drag coefficient would not be the same value as that determined for
the chine-immersed condition. The values were calculated from the pro-
posed theory as if there were no non-chine-immersed conditions. For the
non-chine-immersed condition, the 1ift coefficient for a surface having
a constant angle of dead rise is approximately the value determined at
the instant of chine immersion and is a constant for a given trim and
angle of dead rise. (The length-beam ratio is approximately a constant
value for all non-chine-immersed conditions for a given trim and angle
of dead rise.)
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In order to simplify the comparison, the data are summarized in the
following table:

Data to be compared -
Description of Data
Configur Remar
ontiguration model used EBquation of Experimental dsta | in figure - ks
present paper - of reference -
h-inch-beem brass model { |  emmeememeemmeeeeeeeee 31(a} Agreement good except at_trims
above approximately }00 at large
Sharp chine plastic model || =} eeceecceeceeseecee e 31{p) length-beam ratios
h-inch-beam brass model (@3) = 31(c) Agreenent, good
Various model: 12, 32, 3, 33, 34, Agreement good; some differences
arious models 16, 15, and 25 31{a) to 51(k) with vooden models
4-inch-beom plastic model
with 1/16-inch-radius chines Present paper 32(a) and 32(b}| Cp,e reduced to 1.15 and 1.20
Bectangular flat aed’ 1/6%- inch-redius chines
‘plate
(20) Models used in reference data had
either slightly rouided or roughened
chines and reduced values of Cp o
Wooden model {same:model 5
used in both ref. 31 and 35) 31, 52, end 35 32(c) to 32{e) resulted. In case of reference 35
the chines had greater chine radins
or roughness as & result of wear in
use; further reduction in Cp o
resulted. ’
With B.ngle of dead rise 28 and 25 33
of 20 Agreement good except for trims sbove
With angle of desd rise 28 and 25 5 spproximately 30
af k0%

Bagic V-surface (23) Agreement good for length-beam ratios
above 3.0; below this value the
experimental data failed to show the

w‘z}f‘ ';;gle of deed rise 36 35 usual increase in Cf as lnp/b
decreased, Similar effect slightly
evident in fig. 34(b) for P = 40°,

With ‘an effective angle

V-surface of dead rise of 16° (20) 15 end 25 36 Agreement good

with horizontal (ep,c value from fig. 3
chine flare With an effective angle
2k and ement good
of dead rise of 32047! > 1 here: &

With an effective angle

V-surface of desd rise of 15953' (20) 38 Agreement. good

with vertical (Cp,c velue from fig. 3)
chine strip With an effective angle 39 Agreement good
of dead rise of 31959*
Agreenent good up %o trims of 16°.

'rrii.ngulg flat Vooden surfaces (see (a4) 31 and unpublished k1 Values lower than those at trim of

g & erd)ase fig. 40) tank no. 2 data 209; chines may be slightly rounded
orva: since they are made of wood.

Some of the experimental data that were obtained with wooden models
(for example, see ref. 31) were lower than the values predicted by the
proposed theory; this difference is thought to be due to the influence
of the local shape at the edges (slightly rounded or roughened chines).

The effects of Reynolds number, scale, and nonuniform chine radii
on CD,c have not been determined because of the limited data available.

The 1lift on various pure-planing surfaces with rectangular or tri-
angular plan forms similar to those considered can be estimated by changing
+the value of the crossflow drag coefficient CD,c for a given configura-

tion. Values of the crossflow drag coefficient should be determined from
tests; however, reasonably accurate approximations that are satisfdactory
for engineering calculations can probably be made (see fig. 3) that will
approximate the pure-planing 1ift for surfaces similar to those considered
herein.
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For planing surfaces that vary considerably from those considered
herein, only data for a given angle of trim and aspect ratio (for a given
effective angle of dead rise) are required to determine the value of CD,c
from equation (20). (The experimental values of 1ift coefficient, trim,
aspect ratio, and effective angle of dead rise are substituted into equa-
tion (20), which is then solved for the value of CD,c-) Since the value
of CD,c is a constant for a given planing-surface cross section, the

1ift coefficient for wide ranges of trim and aspect ratio can then be
estimated. If values of Cp,c are obtained for two or more effective
angles of dead rise for a given type of planing surface, the value of
CD,c for similar surfaces having a different effective angle of dead rise
can be estimated by interpolation. Therefore, in order to calculate the
1ift coefficient from equation (20) for wide ranges of trim, length-beam
ratio, and effective angle of dead rise for a given family of planing
surfaces, only a very few test points are required.

Center-of -pressure location.- A comparison of theory and experiment
for the center of pressure is given in the following table:

Data to be compared -

Description of

Data presented

Triangulsr plan form

fig. 40)

tank no. 2 data

Configuration model used BEquation of er Lten Remarks
tal data in -
present paper Eng referencea- teure
a
Rectapgular -flat plate L.inch-beam brass model (25) 25, 31, and 25 42 Good agreement
With angle of dead rise (25) 25 and 28 43 Good agreement
of 20°
Basic V-surface w121; iggle of dead rise (25) 25 and 28 Ll Good egreement
With angle of desd rise (25) 36 45 Good agreement
of 50°
With an effective a.ngle (25) 13 and 25 46 Good agreement
Vosurface with of dead rise of 16
borizontel chine flare| iy apn efrective angle (25) o) and’ 25 N7 Good agreement
of dead rise of 32047!
With en effective angle {25) 26 L8 Good agreement
O3t
V-surface with vertical of dead rise of 15°33
chine strips With an effective angle (25) 26 k9 Good agreement
of dead rise of 31959' |
Wooden surfaces (see (26) 31 and unpublished 50 Good agreement

8The values of Cp,c for equation (25) were determined from figure 3.

CONCLUDING REMARKS

The principal planing characteristics for wodels have been obtained
in extended ranges of trim and length-beam ratio for a rectangular flat
plate and two V-bottom surfaces; therefore, force approximations for
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water-based aircraft can be made in these extended ranges with more con-
fidence. The data obtained for rectangular-flat-plate surfaces having
very slightly rounded chines indicated that slight differences in con-
struction at the point of flow separation can result in decreased 1ift
and drag coefficients obtained for a given flat-plate configuration;
however, the center-of-pressure location, skin-friction coefficients,
and lift-drag ratios remained approximately the same for the trims tested
(8° to 18°). These data showed that slight differences in construction
at the point of flow separation were probably the reason for the differ-
ences in experimental data obtained for a given configuration by various
experimenters.

The proposed theory appears to predict with engineering accuracy the
1ift and center-of-pressure location of rectangular flat plates, triangular
flat plates planing with base forward, and V-shaped surfaces having a con-
stant angle of dead rise, horizontal chine flare, or vertical chine strips.
A reasonably accurate approximation can probably be made for the crossflow
drag coefficient of a given model that will result in satisfactory engi-
neering calculations of 1ift and center of pressure for pure-planing
surfaces similar to those considered in the present report. Also, the
proposed theory (which can be applied to both the chine-immersed and the
non-chine-immersed condition) together with the method for approximating
the 1lift coefficient due to buoyancy gives a reasonably accurate method
for estimating the 1ift characteristics of planing surfaces for a wide
range of conditions.

Langley Aeronautical ILaboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., November 23, 1956.
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TABLE I
EXPERIMENTAL PLANING DATA OBTAINED FOR A RECTANGULAR FLAT PLATE

(2) Brass model baving sharp chines

1 1 1 lc v,
ffi;‘;g Cy £ 2 *- fn—p' sq ft/sec | ©D,b L,b Cp,s oL,8

(18.22 1.59 1.64 1.66 0.705 1.80x 1070 | 0.061 0.285 0.037 0,17k
18.13 2.66 2.72 2.7% ST 1.80 087 375 052 .138
18.19 3.68 3.7k 3.77 TN 1.78 .108 JA53 .029 W121
12 ¢18.19 k.82 4.85 4.87 687 1.78 .126 S5l .026 .108
18.19 5.60 5.65 5.68 69 1.78 J1h1 582 .025 .103
18.17 6.7h 6.80 6.82 .652 1.67 156 646 .023 .09
| 18.38 7.70 T7.76 7.78 .663 1.76 ksl 698 022 090
18.13 1.76 1.82 1.8% .706 1.80 .10h .389 057 L214
18,16 2.91 2.97 3.00 698 1.80 146 517 049 A7k
18.19 3.82 3.89 3.92 700 1.78 175 615 045 .158
15 < 18.19 4,98 5..06 5.10 673 1.78 213 .39 042 146
18.22 5.79 5.8% 5.86 669 1.67 234 .806 .00 ,138
18.10 T7.00 7.05 7.07 .659 1.78 261 .902 037 .128
| 18.32 7.7 7.80 7.8% .660 1.76 -281 -59 .036 .123
(18.13 1.82 1.88 1.92 701 1.80 .160 485 .085 .258
18.16 3.01 3.05 3.07 .681 1.80 .220 656 .072 215
18.16 3.88 3.95 3.95 678 1.78 263 .786 067 .200
18.19 b5 h.h9 451 665 1.78 287 853 .06k .190
18 18.13 5.92 5.96 5.98 655 1.78 2352 1.025 2059 172
18.19 6.88 6.92 6.9 646 1.67 .388 1.135 056 .64
18.53 6.91 7.00 T.Oh 639 1.56 .385 1,141 055 2163
18.53 1-95 799 8.02 .640 1.56 431 1.270 .05l .159
| 18.19 8.02 8.07 8.10 RESR 1.67 RITS 1.283 055 2159
(18,13 1.95 2.00 2.02 676 1.80 .226 .582 ,113 .291
18.13 2.75 2,80 2.82 695 1.80 .300 .64 .107 .273
18,16 2.88 2,92 2.9 685 1.63 307 .780 105 267,
18.13 .08 k.12 4.1k .660 1.78 379 . .092 =
21 18.19 5.1k 5.19 5.22 645 1.78 Wb 1,111 .085 .21
18.04 5.98 6.04 6.07 629 1.78 495 1.24h .082 .206
18.38 T7:10 T.16 T.20 632 1.56 566 1.425 .079 +199
18.22 T.13 T.18 71.22 .638 1.67 .582 1.k29 .08L .199
L 18.4% 7.99 8.03 8.05 .620 1.76 .610 1.510 076 .188
18.13 .79 .82 84 LTS 1.63 171 387 +209 L72
18.19 1.99 2.0k 2.07 673 1.80 304 685 [ 149 .336

18.16 3.12 3.16 3.19 678 1.80 et G2 1% .2
18.13 4,06 4,12 L1y Rant 1.78 511 1.121 124 272
18.19 5.16 5.22 5.24 633 1.78 606 1.315 116 252
oh 18.59 5.94 6.01 6.04 642 1.56 686 1.480 Sk 246
18.19 6.12 6.17 6.20 635 1.67 697 1.512 L113 245
18.59 7-02 7.09 T.12 .636 1.56 787 1.680 J111 237
18.50 8.10 8.15 8.18 .610 1.56 864 1.866 .107 .229
9.13 3.00 35.0% 3.07 660 1.63 RYE] .912 .136 »300
9.15 b .06 4,11 Ll 635 1.63 51k 1.122 125 275
| 9.16 5.13 5.21 5.2k .628 1.63 .60k 1.518 2116 . 253
18.25 H 1.00 1.02 Rvid 1.63 .296 .520 .296 .520
18.25 2.0% 2.09 2.12 662 1.63 493 851 236 Jhot
18,22 3.02 3.08 3.1L 687 1.63 662 1.127 215 366
18.33 b2 k.57 h.36 582 1.56 850 1.h7h .186 323
30 18.32 5.37 bR 5.5L 620 1.56 1.035 1.7hs 190 .320
18.47 6.21 6.31 6.36 607 1.56 1.148 1.986 .182 .315
18.50 T.03 7.12 716 | —mem- 1.56 | meee- 2.177 ——— .306
9.19 5.26 5.33 5.36 645 1.63 1.002 1.748 .188 .328
9.16 h.25 k.32 k.36 649 1.63 .829 .17 192 .328
| 9.16 3.03 3.10 3.16 .685 1.63 639 1.111 .206 358
18.25 .97 1.03 1.06 T2 1.63 .381 .582 371 .566
18.13 2.00 2.06 2.09 BTh 1.63 623 91k 303 gl
30 18.13 3.25 3.32 5.36 .615 1.56 871 1.256 .262 2378
18.32 4,25 437 b k2 652 1.% 1.12h 1.600 257 366
18.28 5.38 5.49 5.5k .59 1.56 1.351 1.928 246 351
18.65 6.h7 6.57 6.62 | -—-o- 156} —eee- 2.227 | --m- 339
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TABLE I.- Continued

EXPERIMENTAL PIANING DATA OBTAINED FOR A RECTANGULAR FLAT PLATE

(v) Brass model having sharp chines 3 no wind screen

. 1 1 1 1

Trim, Ze |l m | k| €P v,

T, deg v b b b | 1, |54 £t/sec p,b | %L, | 0,8 | O,
(18.28[1.64]1.69]1.72]0.761]1.80% 1072} 0.061 |0.291 |0.036 |0.172
18.13|2. 40 2. 4| 2.4 7] 754 1.80 081 ] 361t 033 | .148
18.163.54]3.5913.621 .716|1.80 01 | 45 | .028 | .12L

12 [918.12[k.67|k.72[4.75! .689]1.80 118 | 519} .025 | .110
18.13{5.66{5.72|5.7%| .67611.80 JA32 1 578 | .023 | .101
18.19{7.80|7.86{7.88] .637]1.80 165 | 6921 021 | .088
18.18(6.87(6.92]|6.95] .663]1.80 52 | .64k | 022 | L,093
18.13(1.87]1.92|1.94| .719{1.80 151 | 493 | L078 | 257
18.19|2.88]2.94{2.96} .705]|1.80 .206 | 653 | 070 | .222

18 d28.15 (4.00{%.05 |4.07 .666]1.80 259 | 798 | .06k | .197
18.1515.9215.97(6.00| .651]1.80 k6 |1.027 | 058 | 172
18.1317.10|7.25(7.18| .641]1.80 L399 11.189 | 055 | .16k
18.18(7.97|8.03|8.06| .628(1.80 Qo6 |1.253 | 053 | .156

(c) Brass model having sharp chines; no wind screen or spray shield
18.28{1.54[1.59|1.62 |0. 74k |1.64 x 1072[0.060 |0.286 |0.038 |0.180
18.19/2.70{2.75{2.78{ .709]1.64 .089 1 .388 | .032 | .11

12 18.13{3.8%}3.88]3.91| .688|1.64 105 | U462 | 027 | .119
18.22 . 7414 804,82 .6TL|L.64 120 | .528 | .025 | 110
18.19(5.84{5.89{5.92| .66411.64 A35 | 5% | 023 | 101

(4) Plastic model having sharp chines
18.00(1.24|1.29]1.31[0.725]1.78 x 10-510.0255}0.1542|0.0198]0.1195
18.0012.48{2.52(2.54 | .725|1.78 0373 .2109] 0148 .0837
18.00(3.58(3.621|3.64| .718{1.78 L0h63] 25341 .0128] 0700
8 18.00 k. 47|h.52]4 .54 | J712]1.78 .0529] .2811| .o117| .0622
18.00(5.30]5.34(5.361 .708]|1.78 .0582| .3087| .0109| .0578
18.00{6.40{6.45(6.48] .692|1.78 L0671 J3406| .o104]| L0528
18.00(7.53{7.57|7.59( .701|1.78 0749 .3740| .0099{ .Oko4
17.93|1.58{1.6211.65] .709]|1.78 .0611] .2885) .0377]| .1781

12 17.95 [4.0114.06]4.08] .686]1.78 .1092] .4669] .0269| .1150
17.9315.70|5.75|5.77| -675|1.78 A3 W5TT3| .0239] L1004
18.10(7.77!7.827.85( .666(1.80 .1713( .6889( .0219f .0881
17.86|1.94(1.91(|1.86] .674|1.78 L1606 L4897! .0841| 2564

18 17.95{2.92|2.9%6(2.98| .679/1.78 .2196| .6515| .07h2| .2201
17.9515.14{5.19{5.21 | .639|1.78 31661 .9363| .0610| .180k4
18.19{6.916.99(T7.02( .643{1.80 .389311.1310( .0557| .1618

27
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TABLE I.- Concluded
EXPFRIMENTAL PLANING DATA OBTAINED FOR A RECTANGULAR FLAT PLATE

(e) Plastic model having 1/64-inch-radius chines

il
Trim, 17 i lc v,
T, deg A el e -5 ;;R sq ft/sec | Db | CL,b | Cp,s | 1,8
18.35| 1.79]1.84| 1.86] 0.711| 1.67 % 1072| 0.0638{0.2950]0.0347]| 0.1603
18.13| 2.54|2.59| 2.62] .705]1.67 L0761 J3uu5| 0294 .1330
18.19} 3.59|3.64] 3.66] ,.708|1.67 L0972 Lee2| 0267] .1160
12 |¢18.19| 4. 791 4.84| 4 .87 .685]1.67 L1181 499 024k 1032
18.16}5.5215.56]5.59| .663}1.67 .1290| .5399| .0232] .0971
18.07|6.87|6.92|6.95| .663{1.67 .1550| .6297] .0224( .0910
| 18.07] 7.60{7.66|7.60| .651|1.67 .1662| .6764) .0217| .0883
[18.28] 2.00}2.05| 2.08] .708]1.67 .1615] .4869| .07838| .2375
18.19]2.84|2.90] 2.93] .684]1.67 .2068] .6200| .0713| .2138
18.19{3.79|3.84| 3.86] .672|1.67 .2508] .T438| .0653| 1957
18 {18.19/%.92|4.98|5.00| .646]1.67 20481 .8620| .0592| .1751
18.13|5.89(5.94|5.97] .645]1.67 .3380| .9789] .0569] .1648
18.19| 7.02|77.06| 7.08] .64h4|1.67 391111.1261| 0554 1595
118.22|7.76|7.82} 7.84} .63T7{1.67 L419711.20551 .0537| .15k2
(f) Plastic model having 1/16-inch-radius chines

(18.13]1.641.68|1.58{0.712|1.78 x 10-5|0.0272|0.1605 |0.0162|0.0957
18.13|2.13|2.18{ 2.20{ .751{1.78 .0320] .1820] .oi47| .0835
18,00(3.50]3.55]|3.58] .730{1.78 L0437 .2318] .0123] .0653
8 |£18.00|k.50|4.54{%.56| .720]|1.78 L0504k ] 2624} 0111 .0578
17.86{5.38]5.43]5.45] .716{1.78 .0586] 29481 .0108] .0543
17.93|6.49|6.54]6.56] .706]/1.78 L0654k .3257] .0100] .O498
118.00]7.53|7.58] 7.61| .694[1.78 0715 3487} .009%] .0460
(18.27|1.64|1.69|1.71] .707]|1.80 05581 .2630| .0330] .1556
18.27{2.62|2.68{2.70{ .704{1.80 LOT48] 3371 0279 .1258
18.27]3.7513.80{3.83] .692|1.80 .0931] 4081 .0245] 107k
12 [K18.33|Lk.64{4. 69|k, 71] .689[1.78 L1116] 47281 .0238| .1008
18.2015.7115.75{5.781 .678{1.78 .1288] .5365( .0224] .0933
18.13|6.7616.82]6.8%| .674]|1.78 LAh531 59811 .0213| 0877
118.13{7.81|7.86|7.89f .665{1.78 1651 .6626| .0210( 0843
(18.13]1.75/1.80}1.83| .686|1.78 L1463 J4h66| .0813| .ou8L
18.13{2.74|2.79|2.81] .683]|1.63 .1987| .5903| .0713| .2118
18.13|4.0114.06{4.08]| .660(1.78 24981 .7h29| 06161 .183%2
18 [§18.13{5.02|5.09|5.09{ .649]1.78 2917 85661 0573 .1683
18.26|6.2216.26|6.29] .641]1.78 .3389] .9786| .0541| 1562
18.13]6.9016.9516.99] .642|1.78 3670 |1.0627| 0528 1529
(18.13|7.9L]7.96{7.99| .641|1.78 L1068 11.167T) L0511 L1k6T
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TABLE II

EXPERIMENTAL DATA OBTAINED FOR A PLANING SURFACE HAVING

A 20° ANGLE OF DEAD RISE

Trim, | ¢ el lm| b | lep v,

T, ' | B || |3 |sart/sec |%D,b [CL,b [CD,5 [Cn,s
(18.31|1.68]1.90]2.12]0.708]|1.76 x 10~ 0.051]0.236|0.027]| 0. 124
18.13]2.16{2.39]2.62| .721|1.73 065 .275] 027 .115
18.19]2.29]2.52]2.7T%] .725]1.73 0681 .277] .027] .110

10 [¢18.19(3.45|3.68(3.91| .696|1.73 .085] .353| .025] .096
j 18.19| k.27 4 . 48|14 .68| .680|1.71 .099{ k03| .022] .090
18.19{5.49|5.70]5.91] .665]|1.71 J11k] 467] .020| .082
18.13{6.29|6.38|6.73] .684{1.71 .128| .485| .020| .076
18.29{7.09|7.29{7.49] .663|1.TL J146] 5541 020 .OT6
18.47/1.80{1.93]2.06| .709|1.76 129] .396] .067| .205
18.3112.78|2.90]|3.03{ .681|1.73 LTk 513] L0600 W17
18.28]3.80(|3.93{4.06] .663|1.73 .212| .629| .054]| .160

18 18.13 k. 721 4.85|4.98] .665|1.T1 252 JTh2| .052{ 153
18.1315.70{5.8315.91 .643{1.71 286} 840} .okol 1Lk
18.22i6,66]6.79]6.921 .634{1.71 .326| .94k .ou8) .139

1 18.16]7.81]7.94]8.06] .620(1.71 ST3|1.068] JOuT[ 134
(18.31{2.02]2.12|2.21! .680]1.76 257 5681 .121] .268
18.2513.04k|3.14]3.20] .665|1.67 Shol| L7721 W11 246
18.1613.94 | 4. 03| h.12] .649]2.72 423 .931] .105] 231
18.13)|4.90|4.99|5.08] .625(1.72 .509i1.105| .102| .221

o |€18.13]16.26(6.35/6.4h | .620]1.67 6101314 096 .207
18.19}7.06|7.14]7.24} .628]1.70 671|142 J09] 202
18.3117.86|7.95|8.00| .616|1.54 .730{1.586( .092( .200
9.10(3.11}{3.19|3.28| .655|1.67 S48 7781 J109] Lokh
9.11]%.12|4.19{k.27] .635]1.67 Ai36] .9681 .10k .o31

L 9.07{5.17|5.2415.33] .614|1.67 .52911.148] .101] .219
(18.28]1.40[1.k5{1.51| .660[1.63 .302| .523| .208| .361
18.1912.32]|2.38|2.43]| .62L{1.63 Lu5( sl o187 J324
18.1913.38]3.4413.50{ .630}1.63 .60511.020} 176} .297

30 <18.57 3.26{3.32]3.39| .637|1.56 588 .993| .177| .299
18.31 k. 27| 4. 3214 ,38] .620(1.56 J21|1.205) 167 .279
18.31}5.38]5.43]5.49] .61h]1.54 885 )1.472] 165} 271
18.2516.5116.55|6.62] .60k{1.54 1.035(1.703| .158| .260
118.25|7.2117.27]7.32] .609]1.54 1.15611.876] .159] .258
(18.13}1.54|1.61{1.68| .622{1.63 Lo6| 610 L2521 379
18.16]2.k2f2.46|2.49] .632]1.63 .59 .868| .240| .353
18.31]3.66|5.70{3.75| .616]1.56 .82111.184] .222] .320

34 K18.25(4.68 k. 71k Th] .605]1.56 991432 (211 304
18.3115.6115.66]5.69{ .600{1.56 1.194(1.6921 2111 299
18.4116.42{6.46(6.50 | .602]1.5k 1.3371.867| .207| .289
118.32{7.52]7.56|T7.60 |~~==- 1.5 0 |emeem 2,192 |~umm- «290
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TABLE ITI

EXPERIMENTAL DATA OBTAINED FOR A PLANING SURFACE HAVING

A 4O ANGLE OF DEAD RISE

. 1 1 Ix | 1

Trim, e | smo X c v,

T, deg v b b b TIEE sq ft/sec °p,b |CL,p ‘p,s CL;S
18.07/0.58{ 1.1411.69{0.756 1.72><1o’5 0.025]0.100{0.022{0.088
18.07{1.60| 2.14|2.68] .688l1.72 Lokl .167] .019| .078
18.13(2.82|3.36{3.91| .655(1.72 .060| .228] .018] .068

12 1¢418.1313.85|h.40|4. 95| .639]1.72 L0721 .273] .016] .062
18.16|4.96|5.51|6.06| .634]1.72 09| 3311 .o17| 060
18.1615.82!6.36|6.95| .627|1.69 .102| .350| .016| .055
118.2216.99| 7.52|8.06| .622|1.69 120! Wikl .016] .055
(18.1311.141.48{1.81] .704]1.72 O .219) .050( 148
18.1312.28|2.59|2.90] .661|1.63 .119| .339| .Ook6} .131
18.19{3.h0( 3. 711k, 01] .649]1.72 L1561 J456] .oh2) 123

18 18.19{4.32|4.65|4.98] .631|1.67 JA95| 539 JO2p L116
18.13|5.42|5.7416.04| .617]1.72 22k (6261 .039] .109
18.2516.36[6.67[6.99] ~===- 1.69 .2531 .T00( .038( .105
118.16}17.46|7.77|8.07] .605{1.69 .280| .761| .036| .098
f18.1341.711.91|2.10| .633|1.63 .170| 371 .089( .19%
18.13]2.60|2.80[2.99| .630|1.72 2% .515] 0841 .184
18.16|3.821 k.03 k. 24} .618]1.72 314 L6731 .078] 167
18.161h .57 4. 7514.93| .611|1.T72 356 760 0751 160
18.29(5.7415.92|6.11} .611{1.67 As61 .93 .077] 161

2l 18.13{5.84{6.01|6.19| .616{1.72 L63| .962| J077] 160
18.1616.85| 7.0k { 7.2k .59611.69 .500]1.056| .071| .150
18.16(7.61),7.79{7.96| .602]|1.69 .553|1.151| .071]| 148

9.14|2.63]2.8012.99| .622|1.67 2551 5121 J084| .183
9.13|3.7813.98k.17] .611l1.67 .318| .689| .0801 .173
. 9.08/4.81]5.02]5.20] .601|1.67 Jio2) .828] .080| .165
(18.13]1.15(1.27{1.39| .627|1.63 LA851 .318] J1k6] 250
18.16]2.04[2.14[2.25] .623{1.63 29| 5051 .138] .23%6
18.13]3.0513.1413.24 1 ,610]1.63 Lok} 722l L2135 .230

30 {<18.13|4.05|4.131k.23] .615{1.63 S5l 0909 L1321 .220
18.3114.95(5.0115.12 .597]1.58 .62611.032{ 125 .206
18.25(6.0116.0716.12| .587{1.58 .75311.238] 12k | .o0k4
[18.19|7.47|7.53|7.58]| .579]1.58 L911]1.483) 121 .197
(18.07|1.29{1.37|1.48] .617]|1.63 .255| 377! 186 .275
18.2512.38|2.46}2.55] .6281.63 JAst o L6h9] ,181) 264
18.15|3.10}3.1613.22| .612|1.63 LUT] 790 L1735} .250

34 1< 18.19ik.20{k.22|k.25] .617]1.58 6921 .99 .164| .236
18.33(5.32(5.3515.38( .585{1.58 .883(1.263| .165{ .236
18.3316.35|6.12|6.40} .5831{1.58 L991 (1401 .162] 229
|18.30(7.16|7.207.25| .584|1.58 1.181]1.656| .164| .230
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242
2.0 b~
V-shaped surface having vertical
chine strips. (refs. 25 and 26)
1.8 = /‘/
-~
7~
7
106 -
- V-shaped surface having horizontal chine
S _ -~ flare. (refs. 13, 2L, and 25)
' ~
& P
43" lch -l /
2 -~
()]
ot
: \_
35 Rectangular flat, triangular flat, and
g 1.2 V-shaped prismatic surfaces having a
© constant angle of dead rise. (refs.
é" 23, 28, 36, and data of present report)
ke
E | Rectangular flat with 1/6L-~inch-
o 1.0 radius chines (Li-inch~beam model)
7]
n
4 Rectangular flat with 1/lé-inch-
© radius chines (lL—inch-beam model)
.8
Ny -
vb -
o
o i ] . 1 1
10 20 30 40 50
ﬂe, deg

Figure %.- Varlation of

crossflow drag coefficient for various types of
planing surfaces.
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4.000" -

(a) Effective angle of dead rise, 16°. (See ref. 13.)

™~ 1.288 —=

< 4.000 —

(b) Effective angle of dead rise, 32° 47'. (See ref. 2k.)

Figure 5.- Cross section of surfaces having horizontal chine flare.
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154

e
T

B
— z.ooo"——-—i

(a) Effective angle of dead rise, 15° 33'. (See ref. 26.)

4.125" g

[ 390"

~ 4125 >

(b) Effective angle of dead rise, 31° 59'. (See ref. 26.)

Figure 6.- Cross section of surfaces having vertical chine strips.
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«76 r
@)
210
°\ |
o}
68 - b
—ie—— Proposed theory (eq. (23))
& — — . Schnitzer (eq.
Bl — Locke (eq. {7
——— ——38rown {egs. {10) and {11})
I i e — KOT'¥in -~ Kroukovsky,
Savitsky, am Lehman (eq. {6))
.60 .

. Plain symbols - ref. 23
\ Flagged symbols - data of pressnt report

Trim, 7, deg

Lift cogfficient, CL,S

12

(a) Flat plate.

Figure 11.- Comparison of the results calculated from the proposed theory
and references 14, 17, 18, and 21 with experiment.



50

Lift coefficlent, CL,S

«68
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.56
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NACA TN 3939

~—e—mm— Proposed theory (eq. (23))
| — - — Schnitzer (eq. (8))
———— —Tocke (eq. (7))
18 —— —3Brown (eqs. (12) and (13))
v — — —Korvin - Kroukovsky,
Savitsky, and Iehman (eq. (6))

D \ Experiment
} Trim, 77, deg
§ oo
N 12
b 18
a 30

Plain symbols - ref, 28
Flagged symbols - data of present report

Trim, 7=, deg

(b) Dead rise, 20°.

Figure 11.- Continued.
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Proposed theory {eq. (23))
_____ Schnitzer (eq. (8))
—Locke {eq. {7))
e - — Brown {egs. (12) and (13))
i — —— Korvin-Kroukovsky,
Savitsky, and Lehman (eq. (6})

Exveriment

Trim, 77, deg

o L
N 12
D 18
o 50
Plaln symbols - ref, 28
Flagged symools - data of present report

(¢) Dead rise, 40°.

Figure 11.- Concluded.
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90°

75"

— 4.000"

(a) Flat plate.

-~ 2.000"

.

(b) Dead rise, 20°.

- 2.000"————-4

4.000"

4.000"

(c) Dead rise, 40°.

Figure 12.- Cross sections of brass models.
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a) Sharp chines.

VLI
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‘.62“

4.000"

(v) Ejﬁ - inch-radius chines.

LTI iy,

162"

/'Tlg"inch radius

4.000"

Y

(c) ilg - inch-radius chines.

Figure 13.- Cross sections of plastic models.
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L-9590k4

(b) Dead rise, 20°.
Figure 15.- Continued.
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+36

-3h

.30

.28

.26

.22

+20

Drag coefficient, CD,S and Cp g
5

.18

.16

.12
.10
.08
.06
Ol

.02

Figure

NACA TN 3939

O Total drag, Cp,g
o Induced drag, CL’stan‘l’

Trim, 7, deg

3h

30

ol

21

18

15

12

(a) Flat plate.

16.- Comparison of total drag with induced drag.
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Drag coefficient, CD,S and CD,i

«26
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RN
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.08
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Lol

O Total drag, Cp g

59

O Induced drag, CL’Stanf

Trim, T, deg

3l

30

== — ~ o
—— 5 12

i ! 1 ] 1 1 1 1 i - i

.8 1.6 2. 3.2 L.o h.8 5.6 6.4 7.2 8.0

o5

(b) Dead rise, 20°.

Figure 16.- Continued.
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Drag ¢oefficient, Cp g and CD,i
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NACA TN 3939

Q Totel drag, Cp,g

0 Induced drag, CL stanT
’

0] —0 3l

Prim, T, deg

(c) Dead rise, 40°.

Figure 16.- Concluded.
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L-95906

Figure 17.- Spray photographs of flat-plate model with wind screen
removed. Trim, 12°.
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() Dead rise, 20°.

Figure 18.- Continued.

5
AN
5N
AN 4
o3
[}
Ry o NN O
LR £+
A
~lz
Trim = 120 Trim = 18°
.1
{ ] 1 1 1 1 )
i 1 8 10 [¢] 2 I 8 10
Le: Im
b o
5
W
Trim = 24° 3 Trim = 30°
ot
<
[ <]
P
o0 o .2
fa}
.1 Oy &—o—0o o9
1 ] ] 1 } 1 ]
L 8 10 0 2 L . 8 10
lm ©lm
) o
5
RA
9 3 Trim = 34°
[ ¥e]
A
3
2
o
.1
% ——0——0
1 1 ] |
0 2 L 8 10
l’]’l’l
b



6L NACA TN 3939
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110 1 {0
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g A
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2 |- 21
I L ] 1 ] 1 { i ] ]
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A
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(c) Dead rise, L40°.

Figure 18.- Concluded.
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1.0 —
O Wind screen, spray shield
O No wind screen
A No wind screen or spray shield
- Proposed theory
8 F (eq. (25) with Cp o= L/3)
(o] M\%
b
7'(3:13
In
Lo
Trim = 12°
2
{ l ! ] J
0 2 L 1 é 8 i0
m
)
1.0 —
? \8
.6 ~ M
Z'C)P
7’Hl
“ .l L_
Trim = 1§°
2
! ] } ] |
0 2 L 6 8 10
Ly
b

Figure 21.- Effect of wind screen and spray shield on the center of
pressure of a rectangular flat plate.



NACA TN 3939

68

* QUaTOTIIO00

* 0% ‘asta pes(q (9)

*,02 ‘osTx pes (q)

Et.D

0T 8 9

131T uo poads Jo 309JF° 9YL =°gZ oINITJ

*aqeTd qeTd (®)

0T 8 9

e OO0
Fep ¢ L ‘wial

80°*

91°

UCH

2gt

95*

9

Sy <quetoryzecs 311

Bep ¢ | ‘mrag

80°

e¢”

Q
-
>

«
p g
.

f19°

iz

£ 0¢

ix)

cr

o Bep ‘L ‘ural

8

o

o

Lnd

[¢]

N

<

B

tﬁ.

L o]

i)

»

((¢2) *bs)

£aoey3z pesodoad
o¢ O
09 O

088/233 ‘A

80°*

91°

e

4%

]
$"I5 ‘quetorgseoco 2471



69

NACA TN 3939

*qQUOTOTJIIS00 JBIp U0 poads Jo 309FJ0 oYJ =-°*¢e o2umI3tg

. N . \ L ]
o0 esta peaq (°) 002 ‘esta peeq (q) oqeTd 3eTd (%)
a_ q a
1 g B
01 8 9 il 4 0 o1 8 9 7 4 0 ot 8 9 7 2
} 1 i 1 | T | I ! | r ] 1 1 I
. .:O. —1 .JO-
U
i R A age
Bop ¢ L<upad 8 o 80
Fap ¢ [ ‘wpal o e @
e m e ¥
153 w
123 [<]
e 8
4o 3 < o- B
o [¢]
e o
(] ®
B =1
N L . - Fep ¢ L ‘mral
0" -{oe &
2 J
{74 7]
1 e -1 2
e -1 gz
06 o
A .. J... 09 o
2 z¢ oos/37 ‘M

$°Qy <queypiyzeco Beaq




70 NACA TN 3939

1.0 1.0 —
v, ft/sec
o 60
g 30
SN S
O
6 b L
{ le,p
e, p 5
In
L L Proposed theory
(eq. (25) with CD,c =4/3)
2 Trim = 2140 PN Trim = 30°
l ] | 1 i | I |
0 2 L 6 8 0 > L ) 3 g
Em pull 1}
b b

(a) Flat plate.

1-0_ l.O [

lep le,p
m Zm
- AL
o Trim = 2),° oL Trim = 2,
| l | | | | { |
0 2 Ly 6 8 o© 2 in 1 6 8
20 2n
b b
(b) Dead rise, 20°. (c) Dead rise, 40°.

Figure 24.- The effect of speed on center of pressure.
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1.0 1.0
B .8
WD\H"@‘*‘H %
N = .6 -
le,p Ze,p
2 2
m n
oh [ Qh -
ok Trim = §° 2L Trim = 12°
i | | j | | i l
0 2 Loy 6 8 0 2 Loy 6 8
Zm 214
b b
1.0 —
O Brass model - sharp chines
[ Plastic model - sharp chines
A Plastic model - 1/bli~inch~radius chines
s <> Plastic model - 1/16-inch-radius chines
06 -
lc,p
im
I
3 - ¢]
2 L Trim = 16
| ] | ]
0 2 L 6 8

1
1}
b

Figure 27.- The effect of rounded chines on the center of pressure of a
h-inch-beam rectangular flat plate.
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Figure 36.- Comparison of proposed theory with experimental 1ift
cients for a surface having a basic angle of dead rise of 20° and
horizontal chine flare.
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Figure 4l .- Variation of center-of-pressure location with mean wetted-
length—beam ratio for a surface having a 40° angle of dead rise.
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Figure 46.- Concluded.
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Figure 47.- Variation of center-of -pressure location with mean wetted-

lengthe~beam ratio for a surface having a basic angle of dead rise of
40° and horizontal chine flare.
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Figure 47.- Concluded.
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Figure 48.- Variation of center-of-pressure location with mean wetted-
lengthe~beam ratio for a surface having a basic angle of dead rise of
20° and vertical chine strips. (Data of Kapryan and Boyd (ref. 26).)
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Figure 49.- Variation of center-of-pressure location with mean wetted-
length--Dbeam ratio for a surface having a basic angle of dead rise of
40° and vertical chine strips. (Data of Kapryan and Boyd (ref. 26).)
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Figure 50.~ Variation of center-of-pressure location with length-beam
ratio for triangular-flat-plate surfaces planing with base forward.
(Data of Wadlin and McGehee (ref. 31) and unpublished tank no. 2 data.)
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